Thursday, April 3, 2025

Error in Installing Tidyverse on R

If you encounter error in installing "tidyverse" package on R, the solution is on the terminal install first the two packages (libfribidi-dev and libharfbuzz-dev):

# apt-get install libhartbuzz-dev

# apt-get install libfribidi-dev

 

After installing these two packages, on the R cli, install the "tidyverse" package:

 

 > install.packages("tidyverse")

 

To load the "tidyverse" library on R, issue the command:

library("tidyverse")

 

This works on Ubuntu 20.04.

Wednesday, March 26, 2025

Regression using R

Ordinary Least Squares (OLS) Regression Coefficients

MyMdl = lm(formula = GDP2018 ~ T, data = MM_DTA_01)

summary(MyMdl)

Will produce the following output:

Call:
lm(formula = GDP2018 ~ T, data = MM_DTA_01)

Residuals:
     Min       1Q   Median       3Q      Max
-2684399 -2025650  -592330  1430009  6473734

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -2427989     513893  -4.725 1.03e-05 ***
T             218026      11303  19.290  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2248000 on 76 degrees of freedom
Multiple R-squared:  0.8304,    Adjusted R-squared:  0.8282
F-statistic: 372.1 on 1 and 76 DF,  p-value: < 2.2e-16

 

Multiple Regression

MyMdl = lm(formula = GDP2018 ~ T + EX2018 + IM2018, data = MM_DTA_01)


 

Durbin-Watson Statistic for Serial Correlation (Autocorrelation)

DurbinWatsonTest(MyMdl) 

Will produce the following output:
    Durbin-Watson test

data:  MyMdl
DW = 0.035978, p-value < 2.2e-16
alternative hypothesis: true autocorrelation is greater than 0

 

Breusch-Godfrey Statistic for Serial Correlation (Autocorrelation)

bgtest(MyMdl) 

Will produce the following output:
    Breusch-Godfrey test for serial correlation of order up to 1
 

data:  MyMdl
LM test = 74.301, df = 1, p-value < 2.2e-16


Breusch-Pagan Statistic for Heteroscedasticity

bptest(MyMdl)

Will produce the following output:

  Studentized Breusch-Pagan test

data:  MyMdl

BP = 19.317, df = 1, p-value = 1.107e-05

 

Goldfeld-Quandt Statistic for Heteroscedasticity

gqtest(MyMdl)

Will produce the following output:

  Goldfeld-Quandt test

data:  MyMdl

BP = 29.613, df1 = 37, df2 = 37, p-value = 2.2e-16

alternative hypothesis: Variance increase from segment 1 to 2

 

Correlation Coefficient

head(DataNo2)

Will produce the following output:

# A tibble: 6 × 7
     YR     T       GDP GDPPI2018   GDP2018  EX2018  IM2018
  <dbl> <dbl>     <dbl>     <dbl>     <dbl>   <dbl>   <dbl>
1  2008     1  8050201.     0.784 10270878. 1647293 2216258
2  2009     2  8390421.     0.805 10419633. 1481405 2192637
3  2010     3  9399451.     0.840 11183861. 1769189 2668470
4  2011     4 10144661.     0.873 11615360. 1697601 2716794
5  2012     5 11060589.     0.891 12416466. 1901720 2867464
6  2013     6 12050592.     0.909 13254644. 1817413 3037079

 

cor_matrix = cor(DataNo2)

print(cor_matrix)

Will produce the following output:

                YR         T       GDP GDPPI2018   GDP2018    EX2018    IM2018
YR        1.0000000 1.0000000 0.9884230 0.9872057 0.9791493 0.9599731 0.9465083
T         1.0000000 1.0000000 0.9884230 0.9872057 0.9791493 0.9599731 0.9465083
GDP       0.9884230 0.9884230 1.0000000 0.9788880 0.9943552 0.9807268 0.9764256
GDPPI2018 0.9872057 0.9872057 0.9788880 1.0000000 0.9595876 0.9402991 0.9210839
GDP2018   0.9791493 0.9791493 0.9943552 0.9595876 1.0000000 0.9769194 0.9851542
EX2018    0.9599731 0.9599731 0.9807268 0.9402991 0.9769194 1.0000000 0.9859029
IM2018    0.9465083 0.9465083 0.9764256 0.9210839 0.9851542 0.9859029 1.0000000


cor_matrix = round(cor(DataNo2), 2)
print(cor_matrix)
Will produce the following rounded to 2 decimal digits correlation matrix output: 
          YR    T  GDP GDPPI2018 GDP2018 EX2018 IM2018
YR 1.00 1.00 0.99 0.99 0.98 0.96 0.95
T 1.00 1.00 0.99 0.99 0.98 0.96 0.95
GDP 0.99 0.99 1.00 0.98 0.99 0.98 0.98
GDPPI2018 0.99 0.99 0.98 1.00 0.96 0.94 0.92
GDP2018 0.98 0.98 0.99 0.96 1.00 0.98 0.99
EX2018 0.96 0.96 0.98 0.94 0.98 1.00 0.99
IM2018 0.95 0.95 0.98 0.92 0.99 0.99 1.00 

Graphing with R

plot(MyMdl)

Will produce the following graphs: